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Abstract

Background: To understand the impact of weather on infectious diseases, information on weather parameters at
patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather
parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known.

Methods: Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local
temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the
laboratory where the patient’s specimen was tested. The paired values of daily rainfall and temperature for the
laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed
for agreement using linear regression. We also assessed potential dependency of the findings on the relative
geographic distance between the patient’s residence and the laboratory.

Results: There was significant and strong agreement between the daily values of rainfall and temperature at
diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens
Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for
maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient
residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with
some rare situations where the distance between the patient residence and the laboratory was larger than 500 km.
These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between
weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with
discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the
distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on
the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited
tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in
temperature and rainfall.
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Conclusion: The findings confirm that, for the purposes of studying the relationships between meteorological
variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently
similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small
percentage of cases where there is a large distance between the residence and the laboratory could increase the
precision of estimates, but there are generally strong associations between daily weather parameters at residence
and laboratory.
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Background
Weather can contribute significantly to the occurrence
of many infectious diseases, and high spatial resolution
of exposure data has increasingly been recognized as a
requirement in quantifying these relationships [1]. These
analyses can help in understanding the likely changes in
infectious diseases that may take place in the future
through climate or other environmental change [2, 3],
particularly in determining the drivers for change [4, 5],
in the application of suitable models, and for designing
interventions [6]. Variations in diseases by country have
been used to examine the impact of weather that is sepa-
rated from geography [7, 8]. For example, environmental
weather parameters at low resolution (e.g. national aver-
age) have been used as a proxy for the weather experi-
enced by an individual. The methods of collection for a
range of different weather parameters differ, often based
on comparatively few weather stations with limited
interpolation of the data at other locations or because the
exact location of the exposed individual is not known.
To understand the impacts of weather (and the gen-

eral environment) on both communicable and non-
communicable diseases, it is therefore desirable to have
information on the weather parameters as close as
possible to the location of people’s residence. This is not
always possible for a variety of reasons. Datasets from
different agencies are seldom linked together, although
important efforts to integrate heterogeneous datasets
have been made (see the MEDMI project at https://
www.data-mashup.org.uk). With the movement of re-
ported geographic data from the local to the national to
the international infectious disease surveillance records
[9], the geographic resolution can be ‘lost’ in this
process. For example, records from diagnostic micro-
biology laboratories for England and Wales in the Public
Health England Second Generation Surveillance System
(SGSS) database have had limited patient postcode data
before 2008. Furthermore, the computational resources
needed for data linkage at the individual patient post-
code level can be significant if large infectious disease
datasets are being interrogated. As an example, a study
found over a million Campylobacter infections recorded
in England and Wales [10]. The linkage with patient

postcodes also presents challenges to comply with eth-
ical and legal requirements of confidentiality [11], with
insufficient evidence about the efficacy of some anon-
ymisation methods [12].
These concerns are particularly relevant for the increas-

ing number of initiatives aiming to integrate data from dif-
ferent sources (e.g. big data mashups), particularly the
linkage of human health data with environmental data
needed to study the effects of climate and other environ-
mental change on human diseases [13–15]. This study
sought to test whether the linkage of weather parameters
in England and Wales to the diagnostic laboratory post-
codes for daily Campylobacter and Cryptosporidium cases
across England and Wales reported to Public Health Eng-
land would be suitable for use as a proxy for the weather
at the patient’s residence postcode. The linkage of interpo-
lated local weather parameters supplied by the UK Met
Office with the postcodes of the diagnostic laboratories in-
stead of with patient residence postcodes would address
many of the concerns above.

Methods
Infectious diseases data
The Second Generation Surveillance System (SGSS)
database of Public Health England was used to extract
daily individual records of Campylobacter and Crypto-
sporidium infections from 01/01/2005 to 31/12/2014
using specimen date, domestic residence postcodes and
laboratory postcodes. There are approximately 11,200
postcode sectors in the UK, each containing approxi-
mately 3000 addresses, the size of the postcode sectors
varies, ranging from 2864 km2 in a low populated region
in the Scottish Highlands to approximately 0.001 km2 in
most of the densely populated sectors of London
(according to BPH Postcodes at https://www.bph-
postcodes.co.uk/guidetopc.cgi). The two pathogens were
chosen because they were thought to be transmitted by
different routes (Campylobacter from chicken and
Cryptosporidium from faecal contamination of water);
and have a different seasonality (Campylobacter peaks in
late spring and Cryptosporidium in late summer) and
may therefore be subject to different weather influences
(although the postcode relationships to weather were
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not thought to be influenced by these). Cryptosporidium
infections commonly occur as local outbreaks as the
transmission is waterborne [16]; both outbreaks and
sporadic infections may be more influenced by rainfall.
Campylobacter is seasonal and sporadic, and more
linked to a mixture of seasonal drivers [10]. There were
more Campylobacter cases than Cryptosporidium cases,
and both had country-wide distributions.

Meteorological data
The meteorological data used in this analysis were held
on the Medical and Environmental Data a Mash-up In-
frastructure (MEDMI) platform [13] (see http://www.
data-mashup.org.uk). The MEDMI database includes the
Met Office weather observations datasets from the Met
Office Integrated Data Archive System (MIDAS). The
MIDAS datasets consist of fixed station observations
and derived climate statistics; these include over 1500
sites measuring temperature and over 12,000 sites meas-
uring rainfall.

Data linkage
The laboratory postcode, patient residence postcode,
and patient specimen date of Campylobacter and
Cryptosporidium infections were linked with daily tem-
peratures (minimum and maximum oC) and daily
rainfall (mm) using the MEDMI Database tools. The
Public Health England ethics committee approval and
safeguards of patient data were in place to ensure no
breach of patient confidentiality.
Estimates of temperature and rainfall were obtained for

the centroid of each laboratory and patient residence post-
code by Inverse-Distance-Weighted (IDW) interpolation
[17]. The estimates were calculated as the inverse-
distance-weighted arithmetic mean of temperature and
rainfall measurements taken at weather observation sites
within 50 km of each centroid.
The spatial-temporal linkage of infectious diseases

cases with meteorological data on the MEDMI platform
represents an important realisation of Geographical In-
formation System (GIS) that can be used by scientists
and policy makers to generate and test hypotheses, to fa-
cilitate the detection of potential associations between
weather data and infection occurrence, and to estimate
the risk of infection [18].

Statistical analysis
The daily measurements of rainfall (mm), maximum and
minimum temperatures (°C) at the residence postcodes
were plotted against the daily measurements of rainfall,
maximum and minimum temperatures at the laboratory
postcodes. A linear regression in R statistical software
[19] was used to examine associations between the wea-
ther variables at domestic and laboratory postcodes,

where the daily rainfall or temperature at the residence
postcodes was the response variable, and the daily
rainfall or temperature at laboratory postcodes was the
explanatory variable for each pathogen (Campylobacter
and Cryptosporidium). In addition, we assessed the
potential dependence of the findings on the absolute and
relative locations of patients and laboratories by using R
statistical software and GIS.
The distance between patient and laboratory (here and

throughout patient-laboratory distance) was measured
as the great-circle distance (i.e. the shortest distance be-
tween two points on the surface of a sphere), calculated
by using the haversine formula [20] between the latitude
and longitude of patient location and the corresponding
laboratory where the specimen was sent for diagnosis.
For each laboratory, we also calculated the mean dis-
tance of the patient residence from the diagnostic la-
boratory; and we refer to this as the local mean patient-
laboratory distance, where local emphasizes that the
patient-laboratory distances were averaged over all cases
within the catchment area of that particular laboratory.
Similarly, for each laboratory, we calculated the means
and standard deviations of the differences in daily rain-
fall, minimum and maximum temperature between the
patient residence address and the corresponding labora-
tory locations.

Results
There were 441,203 Campylobacter infections, of which
11,381 had missing residence postcode information. Re-
cords with missing residence postcodes were removed
from the study dataset, leaving 429,822 cases with both
residence and laboratory postcodes. For Cryptosporid-
ium infections, there were 30,970 cases with 785 missing
residence postcode information, leaving 30,185 cases
with both residence and laboratory postcodes.
The time series of average maximum weekly temperature

and average weekly rainfall at laboratory postcodes are shown
in Fig. 1 (a and b). The weekly number of cases of Campylo-
bacter and Cryptosporidium are shown in Fig. 1 (c and d).
Figure 2 (panels a, b, c and d) shows strong associa-

tions between the daily measurements of rainfall (mm)
and temperature (°C) obtained at residence postcodes
and the daily measurements of rainfall (mm) and
temperature (°C) obtained at laboratory postcodes for
both pathogens (Campylobacter and Cryptosporidium).
Because both temperature variables gave similar results
for Campylobacter and Cryptosporidium cases, we
plotted the figures for the maximum temperature.
For maximum and minimum daily temperatures at the

laboratory postcodes, the estimates of the slope coeffi-
cients was 0.99 (p-value ≤0.001) and R-squared was 0.99
for both pathogens. For daily rainfall at the laboratory
postcodes, the estimates of the slope coefficients was 0.
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99 (p-value ≤0.001) and R-squared was 0.96 for Cam-
pylobacter and 0.99 (p-value ≤0.001) and R-squared was
0.97 for Cryptosporidium as shown in Fig. 2.
The distribution of the distances between patient resi-

dence address and the corresponding laboratory address
is shown in Fig. 3. Although the overall (i.e. averaged
over the entire dataset) mean patient-laboratory distance
is only 11.9 km (standard deviation = 19.8 km), the distri-
bution exhibits a heavy tail with some rare situations
where the patient-laboratory distance was larger than
500 km. This was confirmed by a detailed inspection of
the data; for example, there were few instances where the
diagnostic laboratory was located in South England and
the patient residence in Northern Ireland or Scotland.
Figure 4 (a, c and e) shows the distributions of the

differences in minimum temperature, maximum
temperature and rainfall registered at the laboratory
and patient addresses. The distributions exhibited a
tail heavier than the corresponding exponential fit,
with differences up to ±10 °C for the minimum and
maximum temperature and ± 20 mm for rainfall. Ex-
ponential fits are commonly used as a benchmark
for heavy tailed distributions, although other ap-
proaches have been proposed [21].

An important property of heavy tailed distributions is
that they result in a higher probability of observing the
values with many outliers. To test if the heavy tailed
distributions arose from the exceptional instances of
large patient-laboratory distances, we compared the dis-
tributions based on the entire dataset (red histograms in
Fig. 4a, c, e), with the distribution based on the subset of
cases when the patient-laboratory distances are lower
than 20 km (blue histograms). The comparison con-
firmed that large discrepancies in the temperatures
and rainfall between laboratory and patient residence
tended to occur for only the large patient-laboratory
distances.
Figure 4 (panels b, d and f) shows the standard devi-

ation in rainfall, minimum and maximum temperatures
difference versus the local mean patient-laboratory
distances. As expected, when this distance was larger (e.
g. because of a large laboratory catchment area), then
the difference in the climatic variables between patient
residence and laboratory were more scattered, resulting
in a larger standard deviation.
Note that the weather stations used to link both la-

boratory and residence postcodes in the analysis were
likely to be the same, but the interpolations used

Fig. 1 Time series of maximum temperature, average rainfall, Campylobacter and Cryptosporidium cases in England and Wales. Panels a, b, c and
d show the average maximum temperature (°C) per week at laboratory postcodes, the average total rainfall (mm) per week at laboratory
postcodes, the number of Campylobacter and Cryptosporidium cases per week from 01/01/2005 to 31/12/2014 in England and Wales
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different weightings according to location and thus pre-
dominantly gave different results.

Discussion
There is a growing need for a more ecological view of
public health [22], and the associations linking data on
weather with disease occurrence can be extremely useful
in demonstrating the public health burden associated
with climate change [23]. It is becoming evident that
with many infectious diseases, the impacts of weather on
seasonality can be teased out through the linkage of
local weather parameters to cases [24]. There is a good
rationale for developing methods to easily link disease
data to weather and other environmental drivers, and to
provide the tools to achieve this. For infectious diseases,
linkage can be examined across pathogens; and this is
being developed through the extraction of long-term
data on individual local weather parameters that can
easily be linked through the postcode of the laboratory
where the case was diagnosed. In this study, the differ-
ences between the weather variables associated with the
patient residence postcode and the laboratory postcode

were comparatively small and were mostly as a result of
a small number of cases whose domestic residence was
at a great distance from the laboratory.
The use of the Inverse-Distance Weighted (IDW)

interpolation tended to smooth the values spatially lead-
ing to a higher correlation between laboratory and resi-
dence locations (especially in urban areas where the two
locations are likely to be close); more sophisticated
methods would require altitude data and additional geo-
processing. Gridded datasets that use the IDW method
with statistical adjustments for known atmospheric ef-
fects have been used by some researchers [25, 26], but
unadjusted IDW interpolation provides a more spatially
localised estimate than taking a single value for a region
or a country (e.g. the Central England Temperature)
used by [27] or [28]), or simply by taking the measure-
ments from nearby weather stations [29].
The analysis is straightforward and applicable to situa-

tions resembling the same circumstances in England and
Wales, i.e. regions with same climatic zones such as re-
gions in the same Koppen-Geiger classification [30], and
with similar public health capacity and spatial density of

Fig. 2 Association between patient residence and laboratory measurements. Panels a, b, c and d show the association between the maximum
daily temperature (°C) and daily rainfall (mm) which were measured at patients residence postcodes and laboratory postcodes from
Campylobacter and Cryptosporidium daily infections of these patients
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Fig. 3 Distribution of patient-laboratory distances. Panel a: geographic location of diagnostic laboratories in England and Wales. The size of the
bubble is proportional to the local mean patient-laboratory distance. For visual purposes, the territory is divided according to NUTS 2 classification.
Panel b: Statistical distribution of patient-laboratory distances
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diagnostic laboratories. The study can be relevant to
other situations; for example, the findings are ex-
pected to be valid in countries in climatic zones exhi-
biting smaller spatial variance in temperature and
rainfall and/or shorter patient-laboratory distances.
However, it is possible that the relationship we found

between weather parameters at the laboratory and
residence postcodes may not transfer to other regions
and countries where the health service administrative
boundaries are on different scales and data distribu-
tion is different. In these cases, an assessment like
the present study would be needed.

a b

c d

e f

Fig. 4 Impact of patient-laboratory distances. Panels a, c and e: Histogram showing the distributions of the differences in minimum temperature,
maximum temperature and rainfall registered at the laboratory and patient residence addresses. The blue histograms correspond to the subset
of cases when the patient-laboratory distances are lower than 20 km. Panels b, d and f: the x-axis represents the local mean patient-laboratory
distances (for visual purposes the continuous values were converted into a discrete bins); the y-axis is standard deviation in minimum
temperature, maximum temperature and rainfall differences registered at these addresses
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The analysis was done only for rainfall and temperature;
however, some diseases may be affected by other environ-
mental variables (not only climatic such as humidity and
barometric pressure but also soil type, density of livestock
etc.). Our analysis was based on outdoor weather variables
and was not able to assess the seasonal indoor environ-
mental variables that most people are exposed to. The
underlying assumption was that most people spend longer
time at home, however, it is estimated that people spend
up to 40% of time at locations other than their residence
address (schools, workplace, transport).

Conclusion
Using the weather parameters at laboratory postcode as
a proxy for the weather parameters at the patient resi-
dence can be a valid approach in England and Wales
and useful in exploring the relationships between wea-
ther and infectious diseases over time. However, large
discrepancies between the weather parameters at the
two different locations can occur in some cases. These
typically arise in instances of large distances between pa-
tient residence address and the diagnostic laboratory,
but also reflect the intrinsic spatial variability of both
temperature and rainfall (e.g. localized episodes of rain-
fall). Data linkage at laboratory postcode level also en-
sures data confidentiality.
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